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Allylic ethylation of 2-((E)-dodec-2-en-4-yloxy)tetrahydro-2H-pyran with ethylmagnesium bromide in
the presence of titanium(IV) isopropoxide proceeds via a SN20 pathway to afford (E)-3-methyltridec-4-
ene with excellent syn-diastereoselecivity. This transformation is used as a key step in the synthesis of
(1R/S,7R)-1,7-dimethylnonyl propanoate, the Western corn rootworm (Diabrotica virgifera virgifera) sex
attractant.

� 2008 Published by Elsevier Ltd.
The development of efficient methods for the preparation of
chiral allylic alcohols1 and their derivatives2 increases the syn-
thetic importance of stereoselective carbon–carbon bond forming
reactions. Highly anti-SN20 stereoselective alkylations of allylic
esters have been observed in copper-catalyzed2k–o and hetero-
atom-assisted noncatalyzed reactions of organomagnesium com-
pounds.3 In contrast, the use of o-diphenylphosphanylbenzoate
as a reagent-directing leaving group permits reactions of the
corresponding allylic esters with organomagnesium compounds
in a highly syn-SN20 stereoselective fashion.2p–s Herein, we disclose
the ability of a tetrahydropyranyloxy group to play the same
directing role toward alkoxytitanacyclopropane reagents. As an
application of this method of regio- and diastereoselective
ethylation of THP-protected allylic alcohols, we have synthesized
(1R/S,7R)-1,7-dimethylnonyl propanoate 3, the Western corn root-
worm sex attractant.4

Recently, we reported that interaction of racemic allylic alco-
hols and their ethers with alkoxytitanacyclopropane reagents, gen-
erated in situ by treatment of titanium(IV) alkoxides5,6 with
ethylmagnesium bromide, afforded the products of SN20 substitu-
tion of hydroxy or alkoxy groups with an ethyl group.7 For exam-
ple, allylic alcohol 1a and its derivatives 1b,c were converted
under these conditions into methyl-branched alkenes 2. The
suggested mechanism of the reaction includes coordination of
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the substrate 1 with alkoxytitanacyclopropane species A, followed
by transformation of the resulting complex B to titanacyclopentane
ate-complex C, intramolecular 1,2-elimination of a metal oxide
fragment, and disproportionation of dialkyltitanium intermediate
D (Scheme 1).7a Among the compounds 1a–c, only tetrahydro-
pyranyl derivative 1c gave alkene 2 with high trans-
diastereoselectivity.

Herein, we report the trans-diastereoselectivity of the allylic
ethylation of tetrahydropyranyl derivative 1c combined with high
1,3-asymmetric induction during the formation of a stereogenic
center in a syn-SN20 stereoselective fashion. Thus, treatment of a
0.4 M solution of allylic alcohol (2E,4R)-1a (ee 88%)8 and tita-
nium(IV) isopropoxide in ether with a 1.2 M solution of ethylmag-
nesium bromide gave alkene (3R,4E)-2 with a de of 15% and an ee
of 14%, whereas its THP analogue (2E,4R)-1c (a mixture of diaste-
reomers) afforded the same product with much better stereoselec-
tivity (de 90%, ee 69%). The concentration of the reagent solutions
influenced the stereoselective formation of the stereogenic center
significantly. Thus, the use of fourfold diluted solutions of tetrahy-
dropyranyl derivative 1c, titanium(IV) isopropoxide, and ethyl-
magnesium bromide led to the formation of alkene (3R,4E)-2
with de 90% and ee 87%,9 corresponding to 99% syn-SN20 chirality
transfer (Scheme 2). The enantiomeric purity and absolute config-
uration of the mixture of alkenes 2 obtained were ascertained by
ozonolysis, followed by reduction with sodium borohydride and
analysis of the 1H NMR spectrum of the (+)-MTPA ester of the
resulting 2-methylbutanol (Scheme 2).10,11
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The conversion of allylic alcohol derivative (2E,4R)-1c to the
alkenes 2 with (R) configuration at the stereogenic center at C-3
corresponds to addition of alkoxytitanacyclopropane reagent A to
the disubstituted double bond in syn-fashion with respect to the
leaving THPO-group in a skew-conformation12 of the substrate.
Such a stereochemical pathway of the reaction suggests the forma-
tion of putative tricyclic complex E, where the octyl substituent
occupies the less hindered exo-position (Scheme 2). It should be
mentioned that the allylic ethylation of compound 1c proceeded
with higher syn-SN20 stereoselectivity than trans-stereoselectivity
(99% and 90%, correspondingly), evidencing the ability for forma-
tion of (3R,4Z)-olefin 2 via an anti-1,2-elimination of the metal
oxide fragment in titanacyclopentane intermediate F.

As mentioned above, the ready availability of chiral allylic alco-
hols1 makes the allylic ethylation of their THP derivatives with
alkoxytitanacyclopropane reagents A a potentially useful tool for
synthetic applications. In this work, we employed this transforma-
tion in the synthesis of propanoate (1R/S,7R)-3, the pheromone of
the Western corn rootworm (Diabrotica virgifera virgifera). The
attractive activity of this compound in field testing was comparable
with the activity of the natural pheromone4 (1R,7R)-3 (Scheme 3).

rac-Alcohol 4 was prepared by the reaction of crotonic aldehyde
with 4-(tetrahydro-2H-pyranyl-2-oxy)pentylmagnesium chloride
(5). After resolution of rac-4 by stoichiometric Sharpless asymmet-
ric epoxidation,13 alcohol (2R/S,6R)-4 was obtained with ee 90%
(Scheme 3).14 Protection of the hydroxyl group in the latter and
treatment of resulting THP-ether 7 with an excess of ethylmagne-
sium bromide in the presence of 1 equiv of titanium(IV) isopropox-
ide led to olefin (2R/S,8R)-6 (de 90%, ee 89%) in 70% yield.15

Palladium-catalyzed hydrogenation of the double bond in (2R/
S,8R)-6,16 followed by deprotection and esterification of alcohol
(2R/S,8R)-817 led to the target propanoate (1R/S,7R)-3.4,18



CHO
THPO OTHP

OTHP

ClMg

OH OCOEt

( )3

( )3

EtCOCl, NEt3
( )5

EtMgBr,
Ti(Oi-Pr)4

1. H2, Pd / C, EtOH
2. PPTS, EtOH, 50 oC

80% 70%

90% 89%

(1R/S,7R)-3

5

1. (L)-(+)-DIPT,
  Ti(Oi-Pr)4, t-BuO2H

ee (8R) 89%
(2R/S,8R)-6

(2R/S,6R)-7

THPO

OH OTHP

( )3

4

29%

(2R/S,8R)-8

( )5

2. DHP, PPTS

( )3

Scheme 3.

V. E. Isakov, O. G. Kulinkovich / Tetrahedron Letters 49 (2008) 6959–6961 6961
In conclusion, we have reported a highly stereoselective syn-
SN20 allylic ethylation reaction of the THP-derivatives 1c and 7 with
alkoxytitanacyclopropane reagents and the use of this transforma-
tion in the key step of the synthesis of (1R/S,7R)-1,7-dimethylnonyl
propanoate, the Western corn rootworm sex attractant.
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